Answer:
y - 4 = -4(x+2)
Explanations:
The equation of a line in point-slope form is given as shown below;
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
where;
m is the slope
(x1, y1) is any point on the line
Given the following parameters
(x1, y1) = (-2, 4)
Determine the slope of the line using the coordinates (0, -4) and (-2, 4)
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ m=(4-(-4))/(-2-0) \\ m=(4+4)/(-2) \\ m=-(8)/(2) \\ m=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hanykhk8twcyzieu3d64mbunf819fggtst.png)
Substitute the slope and the point into the formula above to have:
![\begin{gathered} y-4=-4(x-(-2)) \\ y-4=-4(x+2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mv9x7q7ch82cvv8ljt2zfn03xogaqhhv84.png)
This gives the required equation in point-slope form