Given:
Number of sides of the polygon, n = 11
Let's find the approximate measure of one interior angle of the polygon.
To find the measure of one interior angle, apply the formula:
![\text{ interior angle = }((n-2)*180)/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/o4i281xiiwo2btq94gm857b3i0mn7fizom.png)
Where:
n = 11
Thus, we have:
![\begin{gathered} \text{ interior angle = }((11-2)*180)/(11) \\ \\ \text{ interior angle = }((9)*180)/(11) \\ \\ \text{ interior angle = }(1620)/(11) \\ \\ \text{ interior angle = }147.27\degree\approx147.3\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7ycypiibeo8fquqllybfcewtrd7woal4q.png)
Therefore, the approximate measure of one interior angle of the regular polygon is 147.3 degrees.
ANSWER:
D) 147.3°