3.0k views
2 votes
Use the given partition and sample points to approximate the definite integral off(x) = x2 + 2x + 2 on the indicated interval.

Use the given partition and sample points to approximate the definite integral off-example-1

1 Answer

4 votes

The given function is


f(x)=x^2+2x+2


\int ^2_(-2)f(x)dx=\int ^2_(-2)(x^2+2x+2)dx


=\int ^2_(-2)x^2dx+\int ^2_(-2)2xdx+\int ^2_(-2)2dx


=\lbrack(x^3)/(3)\rbrack^2_(-2)+\lbrack(2x^2)/(2)\rbrack^2_(-2)+\lbrack2x\rbrack^2_(-2)


=\frac{(2)^3_{}-(-2)^3}{3}^{}_{}+(2(2)^2-2(-2)^2)/(2)+2(2)-2(-2)


=\frac{8^{}_{}-(-8)^{}}{3}^{}_{}+\frac{2*4^{}-2*4^{}}{2}+4-(-4)


=\frac{8^{}_{}+8^{}}{3}^{}_{}+\frac{8-8^{}}{2}+4+4


=\frac{16^{}}{3}^{}_{}+^{}0+8


=\frac{16+3*8^{}}{3}^{}_{}


=\frac{16+24^{}}{3}^{}_{}


=\frac{40^{}}{3}^{}_{}=13.333

Hence the required value is


\int ^2_(-2)f(x)dx=\int ^2_(-2)(x^2+2x+2)dx=13.333

User Asif Iqbal
by
7.5k points