SOLUTION:
Step 1:
In this question, we are asked to find the equation of the circle with the given characteristics in standard form:
Step 2:
We need to get the distance between the two points:
(11 , - 7 ) and ( 17 , 13 )
![\begin{gathered} d\text{ =}√((x_2-x_1)^2+(y_2-y_1)^2) \\ where\text{ \lparen x}_1,\text{ y}_1)\text{ = \lparen 11, - 7\rparen} \\ \text{and } \\ (x_2,\text{ y}_2)\text{ = \lparen 17, 13\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4c8tj87r24qnt0uo0d55t7hacoku90qoef.png)
![\begin{gathered} d=\sqrt{(17-11)^2+\text{ \lparen13-\lparen-7\rparen\rparen}^2} \\ d\text{ = }\sqrt{6^2+\text{ \lparen13+7\rparen}^2} \\ d\text{ =}√(36+400) \\ d\text{ =}√(436) \\ Radius\text{ =}(√(436))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7h4wnie5z4hv2b65vo0ixa5w6nk8hj16al.png)
Next:
![\begin{gathered} Using\text{ the equation of a circle in standard form, we have that:} \\ (x-a)^2+\text{ \lparen y-b\rparen}^2\text{ = r}^2 \\ where\text{ \lparen a , b \rparen= \lparen}(11+17)/(2),\text{ }(-7+13)/(2))\text{ = \lparen}(28)/(2),\text{ }(6)/(2))\text{ = \lparen 14, 3\rparen} \\ r=(√(436))/(2) \\ and \\ r^2\text{ =\lparen}^(√(436))/(2))^2=(436)/(4)=\text{ 109} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1s8zc12pv3cuictqybsn21eoax5tbfxnr6.png)
![\begin{gathered} (x-14)^2+\text{ \lparen y - 3\rparen}^2=\text{ 109} \\ (Equation\text{ of the circle in standard form\rparen} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1pfw0rds7hj7o0g11803qcm9gtt6lhk29d.png)
The graph is as follows: