186k views
5 votes
metry Precalculus Honors S1Understanding the Inverse Relationshiphe table shows the inputs and corresponding outputsor the function f(x) = (1)(2)*.026x84.Find the following values of the function.ƒ^¹ (3)=[f-¹ (8) =

metry Precalculus Honors S1Understanding the Inverse Relationshiphe table shows the-example-1

1 Answer

4 votes

...

SOLUTION


\begin{gathered} f(x)=((1)/(8))2^x \\ f^(-1)(x)=? \end{gathered}

To determine the inverse function;


Solve\text{ the equation for x, then interchange x for y.}
Let\text{ y=f\lparen x\rparen}
\begin{gathered} y=(1)/(8)(2)^x \\ 8y=2^x \\ ln(8y)=ln2^x \\ ln(8y)=xln2 \\ x=(ln(8y))/(ln2)\text{ ie y=}(ln(8x))/(ln2) \\ \therefore f^(-1)(x)=(ln(8x))/(ln(2)) \end{gathered}

Now,


f^(-1)((1)/(2))=(ln(8*(1)/(2)))/(ln2)=(ln4)/(ln2)=2
f^(-1)(8)=(ln(8*8))/(ln2)=(ln(64))/(ln2)=6

User Nazariy Vlizlo
by
4.5k points