Step-by-step explanation:
Limit of the function:
Limit is the approximate value of the function at a defined value of x.
![\begin{gathered} \lim _(x\to a)f(x)=L \\ As\text{ }x\rightarrow a\text{ then, f(x)}\rightarrow L \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7k275mnbffmggm4slx7ckauzl3qkpfxubz.png)
a)
![\lim _(x\to-\infty)(2x^3-2x)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/echyw9b2615szf3l4fcrypst6t3wr1sq1p.png)
This limit is true. As x approaches negative infinity the function is also approached to negative infinity.
b)
![\lim _(x\to\infty)(-2x^4+6x^3-2x)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/ca9aq4slw8uchtuj6dk0d1ntytkjqry0is.png)
As x tends to infinity. The functions tend to have negative infinity.
This statement is true.
c)
![\lim _(x\to\infty)(9x^5-6x^3-x)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/2ab2ar15oy6g07k77b0muagxtmi17wynl1.png)
When x tends to infinity, the function will also go to infinity.
So, This statement is false.