the The Solution:
Step 1:
We shall split the triangular pyramid into its component surfaces.
3 triangles + 1 triangle.
Step 2:
We shall find the area of the triangle in fig 1., by using Heron's formula.
![\begin{gathered} A=\sqrt[]{s(s-a)(s-b)(s-c)} \\ \text{Where A= area} \\ a=10\text{ ; b= 10 ; c=10} \\ s=(a+b+c)/(2)=(10+10+10)/(2)=(30)/(2)=15 \\ So, \\ A=\sqrt[]{15(15-10)(15-10)(15-10)} \\ A=\sqrt[]{15*5*5*5} \\ A=25\sqrt[]{3}cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7j87p3441o82lof395rlaenhu7wbs4uus7.png)
Step 3:
We shall state the formula for calculating the total surface area of the triangular pyramid.
![\begin{gathered} \text{SA = Area of fig1 triangle + 3(}(1)/(2)bh) \\ \text{Where SA =surface area =214.5 cm}^2 \\ \text{Area of fig 1 triangle = 25}\sqrt[]{3}cm^2 \\ b\text{ =base =10 cm} \\ h=\text{slant height =?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/51w5bv0nzk9cx2yqh3r4hsfy59zsasjge8.png)
Step 4:
We shall substitute the above values into the formula.
![\begin{gathered} 214.5=25\text{ }\sqrt[]{3}\text{ + 3(}(1)/(2)*10* h) \\ 214.5=25\text{ }\sqrt[]{3}+3(5h) \\ 214.5=43.3+15h \\ \text{Collecting the like terms, we get} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jijjx9ojoa1ck13ku7ooa6d57bhmm54hjl.png)
![\begin{gathered} 214.5-43.3=15h \\ \text{Dividing both sides by 15, we get} \\ 171.2=15h \\ h=(171.2)/(15) \\ h=11.413\approx11.4\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ywc1gqwaczfqiafb8nq2gw9ljv5covfytt.png)
Step 4:
The presentation of the Answer.
The slant height is 11.4 centimeters.
Thus, the correct answer is 11.4 centimeters.