182k views
4 votes
(2^12-2x)=16 can you compute this?

1 Answer

2 votes

The given equation is:


2^(12-2x)=16

Apply logarithm to both sides:


\log 2^(12-2x)=\log 16

Apply the properties of logarithms:


(12-2x)\log 2=\log 16

Divide both sides by log2:


\begin{gathered} ((12-2x)\log2)/(\log2)=(\log 16)/(\log 2) \\ \text{Simplify} \\ 12-2x=(\log 16)/(\log 2) \end{gathered}

And:


\begin{gathered} \log _ax=(\log _bx)/(\log _ba) \\ \text{Then:} \\ (\log _(10)16)/(\log _(10)2)=\log _216=4 \end{gathered}

Thus:


\begin{gathered} 12-2x=4 \\ -2x=4-12 \\ -2x=-8 \\ x=(-8)/(-2) \\ x=4 \end{gathered}

The answer is x=4.

User Kkubasik
by
4.3k points