154k views
0 votes
solve the following system of equations algebraically: y= x² + 20x + 63 y= 3x - 9The solutions should be in points.

User Mossa
by
5.7k points

1 Answer

2 votes

Given the following System of equations:


\begin{cases}y=x^2+20x+63 \\ y=3x-9​\end{cases}

You can apply the following procedure to solve it:

1. Make the equations equal to each other:


x^(2)+20x+63=3x-9​

2. Solve for the variable "x":

- Make the equation equal to zero:


\begin{gathered} x^2+20x+63-3x+9=0 \\ x^2+17x+72=0 \end{gathered}

- You need to use the Quadratic formula to find the values of "x". This is:


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

In this case:


\begin{gathered} a=1 \\ b=17 \\ c=72 \end{gathered}

Substituting values and evaluating, you get:


\begin{gathered} x=\frac{-17\pm\sqrt[]{17^2-4(1)(72)}}{2(1)} \\ \\ x=\frac{-17+\sqrt[]{1}}{2} \\ \\ x=\frac{-17-\sqrt[]{1}}{2} \\ \\ x=-8;x=-9 \end{gathered}

3. Substitute each value of "x" into the second original equation and evaluate in order to find the corresponding values of "y":

- For:


x=-8

You get:


\begin{gathered} y=3(-8)-9​ \\ y=-24-9 \\ y=-33 \end{gathered}

- For:


x=-9

You get:


\begin{gathered} y=3(-9)-9​ \\ y=-27-9 \\ y=-36 \end{gathered}

The points are:


(-8,-33);(-9,-36)

User ConceptRat
by
5.0k points