SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given expression
![(9(cos((11x)/(6))+isin((11x)/(6))))/(3√(3)(cos((\pi)/(4))+isin((\pi)/(4))))](https://img.qammunity.org/2023/formulas/mathematics/college/ptcgi1r8vf70yiomssdtaejoyvkcfwzfx7.png)
STEP 2: Simplify the expression
![3√(3)\left(\cos\left((\pi)/(4)\right)+i\sin\left((\pi)/(4)\right)\right)=3√(3)\left(i(√(2))/(2)+(√(2))/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/sdvkhm05j3xwfycf97u8nddxjx3vs2evzq.png)
STEP 3: Rewrite the expression
![=(9\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/(3√(3)\left(i(√(2))/(2)+(√(2))/(2)\right))](https://img.qammunity.org/2023/formulas/mathematics/college/kyx3f9cm8y1aljgf75omazn5gtodirphgf.png)
Divide the numbers:
![\begin{gathered} \mathrm{Divide\:the\:numbers:}\:(9)/(3)=3 \\ =(3\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/(√(3)\left(i(√(2))/(2)+(√(2))/(2)\right)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/189tfzkde6pur0ume73nfgtd8upt6f97vg.png)
STEP 4: Apply Radical rule
![\begin{gathered} \mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{(1)/(n)} \\ √(3)=3^{(1)/(2)} \\ =\frac{3\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)}{3^{(1)/(2)}\left(i(√(2))/(2)+(√(2))/(2)\right)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yjjp285av3a851qkk7ayihh4e3xfb6rxmo.png)
STEP 5: Apply Exponent rule
![\begin{gathered} \mathrm{Apply\:exponent\:rule}:\quad (x^a)/(x^b)=x^(a-b) \\ \frac{3^1}{3^{(1)/(2)}}=3^{1-(1)/(2)} \\ =\frac{3^{-(1)/(2)+1}\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)}{(√(2))/(2)+i(√(2))/(2)} \\ \mathrm{Subtract\:the\:numbers:}\:1-(1)/(2)=(1)/(2) \\ =\frac{3^{(1)/(2)}\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)}{(√(2))/(2)+i(√(2))/(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9qwtfq02lt3gry7ak39fbw3n17v71dh26k.png)
STEP 6: Apply Radical rule
![\begin{gathered} \mathrm{Apply\:radical\:rule}:\quad \:a^{(1)/(n)}=\sqrt[n]{a} \\ 3^{(1)/(2)}=√(3) \\ =(√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/((√(2))/(2)+i(√(2))/(2)) \\ \text{By Multiplication,} \\ i(√(2))/(2)=(√(2)i)/(2) \\ =(√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/((√(2))/(2)+(√(2)i)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qw7k4pkkhvoatefpyt6a6rqguv7di2l2eh.png)
STEP 7: Combine the fractions
![\begin{gathered} (√(2))/(2)+(√(2)i)/(2)=(√(2)+√(2)i)/(2) \\ =(√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/((√(2)+√(2)i)/(2)) \\ \mathrm{Apply\:the\:fraction\:rule}:\quad (a)/((b)/(c))=(a\cdot \:c)/(b) \\ (√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)\cdot \:2)/(√(2)+√(2)i) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u9kzixz4t6uf20ul1h5owwzoy34nviyxm9.png)
STEP 8: Factor out common term
![\begin{gathered} =(√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)\cdot \:2)/(√(2)\left(1+i\right)) \\ =(√(3)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right)√(2))/(1+i) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y17awqou0xcjf2mxirm6qw5f8f7tsx8fiw.png)
By simplification,
![=(√(6)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/(1+i)](https://img.qammunity.org/2023/formulas/mathematics/college/nzc8wegy8teqc9tegrdnm10jm6hf4phveb.png)
STEP 9: Rationalize
![(√(6)\left(\cos\left((11x)/(6)\right)+i\sin\left((11x)/(6)\right)\right))/(1+i)=(√(6)\left(1-i\right)\left(\cos\left((11x)/(6)\right)+i\sin\left((11x)/(6)\right)\right))/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/7v9if9gstk78k7cawvk80p49yubb69aj5r.png)
STEP 10: Write the answer in the required form
![\begin{gathered} (√(6)\left(1-i\right)\left(\cos \left((11x)/(6)\right)+i\sin \left((11x)/(6)\right)\right))/(2) \\ (√(6)\left(1-i\right))/(2)*\left(\cos\left((11x)/(6)\right)+i\sin\left((11x)/(6)\right)\right) \\ =\sqrt{(3)/(2)}-\sqrt{(3)/(2)}i*(\cos((11x)/(6))+\imaginaryI\sin((11x)/(6))) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lnmzppxuqxaml74c6yo7i0dsjlucluiu3v.png)
ANSWER:
![\sqrt{(3)/(2)}-\sqrt{(3)/(2)}i\cdot\left(\cos\left((11x)/(6)\right)+i\sin\left((11x)/(6)\right)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/13i5a5amjfxvims2ivms6a77uozfkvs37w.png)