We have the expression:
![\sqrt[]{-3x-2}=x+2](https://img.qammunity.org/2023/formulas/mathematics/college/tjm01d2k5ff0lqj03w1itowa5hq9lsggw7.png)
The square root, to be defined in the domain of real numbers, has to have a 0 or positive argument. Then, -3x-2 has to be greater or equal than 0.
We can write:

Then, solutions for x that are greater than -2/3 are not valid.
We are left with x=-6 and x=-1.
We can test both:
![\begin{gathered} x=-6\Rightarrow\sqrt[]{-3(-6)-2}=-6+2 \\ \sqrt[]{18-2}=-4 \\ \sqrt[]{16}=-4 \\ 16=(-4)^2 \\ 16=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xh9y7h3uw3m7fj2qvw53tt2tg6qocoo1tt.png)
x=-6 is a valid solution.
We now test the other solution:
![\begin{gathered} x=-1\longrightarrow\sqrt[]{-3(-1)-2}=-1+2 \\ \sqrt[]{3-2}=1 \\ \sqrt[]{1}=1 \\ 1=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qcm3gffiukhpm85hea858mu8pfch0l1sjq.png)
x=-1 is also a valid solution.