Soluton
Question A:
- The initial fee is $1000. While the maintenance cost is $115 per month.
- For the each month we have,
Cost for Month 1: 1000 + 115(1)
Cost for Month 2 1000 + 1515 + 115 = 1(00 + 115(2)
Cost for Month 3: 1000 + 115(3)
- Thus, we can generalize for x months as follows:
![C(x)=1000+115x](https://img.qammunity.org/2023/formulas/mathematics/college/s97trqdmv98eifm59dcr82jros1fs1cf9k.png)
Question B:
- The cost after a year implies the cost after 12 months. Thus, x = 12.
- We have:
![\begin{gathered} C(x)=1000+115x \\ C(12)=1000+115(12) \\ C(12)=1000+1380 \\ \therefore C(12)=\$2380 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhx2kpjmkdx0xczm3uohilu5ardhfvyibj.png)
Final Answers
Question A: The equation is
![\begin{gathered} C(x)=1000+115x \\ where, \\ x=\text{ The number of months in a year} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uem7dapq174wx9dpq1bcdp8hzz3ofwmbhn.png)
Qusetion B: The cost ater 1a year is $2380