Answer:
A. 4
B. 348
C. 2
D. 174182400
E. x = 2
Explanation:
Given - A= (4ǃ+2ǃ+3ǃ)/(3ǃ+2ǃ)
B = (6ǃ-4ǃ)/2ǃ
C = 2ǃx3ǃx4ǃ/(5ǃ+4ǃ)
D = 10ǃx8ǃ/(6ǃ+5ǃ)
E - ((x+5)ǃ(x+3)ǃ)/((x+4)ǃ+(x+3)ǃ)=6ǃ
Proof -
A.
(4! + 2! + 3! )/ (3! + 2!) = [4×3×2! + 2! + 3×2!] / [3×2! + 2!]
= 2! [ 4×3 + 1 + 3] / 2! [3 + 1]
= [12 + 1 + 3] / [4]
= [16] / [4] = 4
⇒(4! + 2! + 3! )/ (3! + 2!) = 4
B.
(6ǃ-4ǃ)/2ǃ = [6×5×4! - 4!] / 2!
= 4! [6×5 - 1] / 2!
= 4×3×2! [ 30 - 1] / 2!
= 12 [29] = 348
⇒(6ǃ-4ǃ)/2ǃ = 348
C.
2ǃx3ǃx4ǃ/(5ǃ+4ǃ) = 2!×3!×4! / [ 5×4! + 4!]
= 2!×3!×4! / 4! [ 5 + 1]
= (2×1) × (3×2×1) / 6
= 12 / 6 = 2
⇒2ǃx3ǃx4ǃ/(5ǃ+4ǃ) = 2
D.
10ǃx8ǃ/(6ǃ+5ǃ) = 10!×8! / [ 6×5! + 5!]
= (10×9×8×7×6×5×4×3×2×1) ×(8×7×6×5!) / 5! [6 + 1]
= (10×9×8×7×6×5×4×3×2×1) ×(8×7×6) / [7]
= (10×9×8×7×6×5×4×3×2×1) ×(8×6)
= 174182400
⇒10ǃx8ǃ/(6ǃ+5ǃ) = 174182400
E.
((x+5)ǃ(x+3)ǃ)/((x+4)ǃ+(x+3)ǃ)=6ǃ
[(x+5)(x+4)(x+3)! (x+3)!] / [ (x+4)(x+3)! + (x+3)! ] = 6!
[(x+5)(x+4)(x+3)! (x+3)!] / (x+3)! [ (x+4)+ 1] = 6!
[(x+5)(x+4)(x+3)! / ( [ x+ 5 ] = 6!
(x+4)(x+3)! = 6!
(x+4)! = 6!
x+ 4 = 6
x = 6 - 4
x = 2
Note :
x! = x(x-1)(x-2).......(4)(3)(2)(1)