Answer:
The height h of the streetlight is 17.5ft
![h=17.5ft](https://img.qammunity.org/2023/formulas/mathematics/college/fck55qmud10vj2ae8k30tczruwi8eh34g6.png)
Step-by-step explanation:
The question can be illustrated in the drawing below;
Firstly, we need to find angle x;
![\begin{gathered} \tan x=(5)/(8) \\ x=\tan ^(-1)((5)/(8)) \\ x=32^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tzurxey5sqjqowfxplkdhgwujlgcbntpyh.png)
From angle x we can now determine the value of height h of the streetlight;
![\begin{gathered} \tan x=(h)/(28) \\ \tan 32=(h)/(28) \\ h=28*\tan 32 \\ h=28*0.625 \\ h=17.5ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aodrsdfekq1ijsm8amckhzkn7p62ur5moj.png)
The height h of the streetlight is 17.5ft
![h=17.5ft](https://img.qammunity.org/2023/formulas/mathematics/college/fck55qmud10vj2ae8k30tczruwi8eh34g6.png)