In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
Table 1
point 1 (0, 6 ) x1 = 0 y1 = 6
point 2 (1 , 7) x2 = 1 y2 = 7
Table 2
point 1 (0 , -2) x1 = 0 y1 = -2
point 2 (1 , -3) x2 = 1 y2 = -3
perpendincular, parallel or neither = ?
Step 02:
Table 1
slope formula
![m1\text{ = }(y2-y1)/(x2-x1)=(7-6)/(1-0)=(1)/(1)=1](https://img.qammunity.org/2023/formulas/mathematics/college/l2sn6gen8zq2qyl535xd6d6cezgpeqy27j.png)
Table 2
slope formula
![m2\text{ = }(-3-(-2))/(1-0)=(-3+2)/(1)=(-1)/(1)=-1](https://img.qammunity.org/2023/formulas/mathematics/college/f5dxp364xg9js49lue36dbxjhcwb770fym.png)
Slope of the perpendicular line, m’
m ' = - 1 / m
m2 = - 1 / m1
-1 = - 1 / 1
-1 = -1
The answer is:
The lines are perpendicular.