Given:
The function is:
![4^((8-2x))=256](https://img.qammunity.org/2023/formulas/mathematics/college/5swxsl2b008fb4m9d66safrt69zaj8709f.png)
Find-:
The value of "x"
Explanation-:
The value of "x" is:
![4^((8-2x))=256](https://img.qammunity.org/2023/formulas/mathematics/college/5swxsl2b008fb4m9d66safrt69zaj8709f.png)
The 256 converts in 4 power then the value is:
![256=4^4](https://img.qammunity.org/2023/formulas/mathematics/college/2mzu6ox3dyzg0dw6f9rbbq60yxzbwfy8sz.png)
So, the function becomes is:
![\begin{gathered} 4^((8-2x))=256 \\ \\ 4^((8-2x))=4^4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ldbza7183w283mtwctkdzvagz7jod9u4e8.png)
If the base same then the power will also same for the function then,
![\begin{gathered} 4^((8-2x))=4^4 \\ \\ 8-2x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9romphv5074uzrdblzfco5173ffnd2sjzn.png)
The value of "x" is:
![\begin{gathered} 8-2x=4 \\ \\ 8-4=2x \\ \\ 2x=4 \\ \\ x=(4)/(2) \\ \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f634fl4h4pb2td59tmn2kwzn3bhpxs0vce.png)
The value of "x" is 2.