Given the equation:

STEP 1 of 2:
To solve the equation using the formula
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
We need to find the values of a, b, and c.
To do that, the equation must be in the form:

Let's rearrange the terms of the given equation:

Now we can identify the values
a = -2, b = -4, c = 5
STEP 2 of 2: Calculate the value of the discriminant:

Since the discriminant is positive, the equation has two real solutions. Using the formula:
![x=\frac{-(-4)\pm\sqrt[]{56}}{2\cdot(-2)}=\frac{4+\sqrt[]{56}}{-4}=(4\pm7.483)/(-4)](https://img.qammunity.org/2023/formulas/mathematics/college/gjtt7qs11w96sk1ec348ntrsjlrnjuwtog.png)
We have two solutions:
x = -2.87
x = 0.87
If we wanted to express the solutions in radical form, then we must simplify the expression:
![x=\frac{4+\sqrt[]{56}}{-4}](https://img.qammunity.org/2023/formulas/mathematics/college/9rrskkqge388gq256bu9z8lbhdgf2ba4cb.png)
Since 56 = 4 x 14 :
![\begin{gathered} x=\frac{4\pm\sqrt[]{4\cdot14}}{-4} \\ \text{Separating the roots:} \\ x=\frac{4\pm2\sqrt[]{14}}{-4} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q4uqwjzgk6cnursgxpovov5jlv65q2nvsn.png)
Dividing by -2:
![x=\frac{-2\pm\sqrt[]{14}}{2}](https://img.qammunity.org/2023/formulas/mathematics/college/ga5j2ohr3vw5stpq99w2j4er2adkmwcxvu.png)
Separating the solutions:
![\begin{gathered} x_1=\frac{-2+\sqrt[]{14}}{2} \\ x_2=\frac{-2-\sqrt[]{14}}{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f7tprd8fd6pqqcontx1jiohcksh4j25zce.png)