The general form of a linear equation in the slope-intercept form is:
![\begin{gathered} y=mx+b \\ \text{Where m is the slope and b is the y-intercept value} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7yh13zlltdezcgasnuc0hbuvsols45ybas.png)
If the line we are looking for is parallel to y = -2/3 x + 1, so their slopes are the same, so m=-2/3 in the above equation.
And also we know that the line passing through the point (-6, -1), so:
![\begin{gathered} y=-(2)/(3)x+b \\ We\text{ evaluate the equation in the point (x,y)=(-6, -1) and find the value of b:} \\ -1=-(2)/(3)\cdot(-6)+b \\ -1=2\cdot(6)/(3)+b \\ -1=2\cdot2+b \\ -1=4+b\Rightarrow b=-1-4=-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gbfjb93b5ezmy4o42i0i9fisuni503q6v1.png)
The equation of the line is:
![y=-(2)/(3)x-5](https://img.qammunity.org/2023/formulas/mathematics/college/6ophwqveny4qv76kke205w4jj5zfyecuni.png)