x=8.746, y=4.848 and 2P=23.594
1) Since we have the angles and the hypotenuse, we can find the missing legs by applying the following trigonometric ratios:
![\begin{gathered} y=\sin (B) \\ y=\frac{opposite\text{ leg}}{\text{hypotenuse}} \\ y=\text{ sin(}29) \\ (y)/(10)=\sin (29) \\ y=10\cdot\sin (29) \\ y\approx4.848 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/or6k02x0cls4q2cxy3ukk5o8glufx9icqu.png)
2) For the missing leg x, we can write out in terms of the cosine (29) or sine (61)
![\begin{gathered} \cos (29)=(x)/(10) \\ x=10\cdot\cos (29) \\ x\approx8.746 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s2uc4or5133ju71qp2dpq00hqsdqbmj4o2.png)
3) And finally, the Perimeter (2P) is equal to:
2P = 4.848 +8.746+10
2P=23.594
Rounding off to the nearest thousandth.