Since the time of the half-life is 3 hours, then we have to divide the number of hours given by 3
The form of the exponential function is
![D(t)=a(b)^{(t)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/9104ughr5pfgd3g1axd0mtq7lduc2mmedv.png)
a is the initial amount
b is the factor of increasing or decreasing
In our situation:
Half-life means b = 1/2
Since the initial amount given is 20 mg, then
a = 20
Since the time of half-life is 3 hours, then
t must be the time divided by 3
The function which represents the situation is
![D(t)=20((1)/(2))^{(t)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/xpczg69tr929jd7nzm1iusmugpxj1lkuxz.png)
Since t = 3, then
![\begin{gathered} f(3)=20((1)/(2))^{(3)/(3)} \\ f(3)=20((1)/(2))^1 \\ f(3)=10\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/87gfqywijw0rxse5pyde0ow1hhtgowbila.png)
a.
At t = 6
![\begin{gathered} f((6)/(3))=20((1)/(2))^{(6)/(3)} \\ f(2)=20((1)/(2))^2 \\ f(2)=20((1)/(4)) \\ f(2)=5\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wm7nz6lkkpnurc1bof4t8xcnkpmptddyi4.png)
At t = 9
![\begin{gathered} f(9)=20((1)/(2))^{(9)/(3)} \\ f(9)=20((1)/(2))^3 \\ f(9)=20((1)/(8)) \\ f(9)=2.5\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qo06ap6km5pf19boeea6janwilk0fc8ja2.png)
b.
To find the amount at t = 10 hours, substitute t by 10
![\begin{gathered} f(10)=20((1)/(2))^{(10)/(3)} \\ f(10)=1.98425\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xh6rhlakf5tu793p7iki4fln9hhy9z9va0.png)
We know that by using the exponential function above
2.
The function form is
![D(t)=A((1)/(2))^{(t)/(n)}](https://img.qammunity.org/2023/formulas/mathematics/college/33ss7tmqbnbilbux0etf9m1v7u4qokkpdz.png)
Where A = 20 -------- initial amount
n = 3 ------- the period of half-life
The formula is
![D(t)=20((1)/(2))^{(t)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/xpczg69tr929jd7nzm1iusmugpxj1lkuxz.png)
3.
The drug remains after 1 hour means substitute t by 1 first, then divide the answer by the initial amount, and change it to percent
![\begin{gathered} D(1)=20((1)/(2))^{(1)/(3)} \\ D(1)=15.87401052 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k1ouoc0olgmuyeaxfwafgun9o3zl6lg0wr.png)
We will find the percent
![\begin{gathered} \text{ \%D=}(15.87401052)/(20)*100\text{ \%} \\ \text{ \%D=79.37\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iutlm3c2uimgnyg0r7r0mbonrt6rc441qt.png)
To find the percent of the amount eliminated subtract 79.37% from 100%
![\text{ \%E=100\%-79.37=20.63\%}](https://img.qammunity.org/2023/formulas/mathematics/college/cse7i31k96dkxmaa5k3eymm8kbuqfykxlp.png)
4.
The direction for adults is
Do not exceed 4 doses per 24 hours
5.
Since the table has a period of 2 hours, then we will use t = 2, 4, 6, 8, 10, 12 in the formula above to find the amount of Dex.
![\begin{gathered} D(2)=20((1)/(2))^{(2)/(3)}=12.599\text{ mg} \\ D(4)=20((1)/(2))^{(4)/(3)}=7.937\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z5s19bka65z0nhm4shvezaoet6agsyvn6a.png)
![\begin{gathered} D(6)=20((1)/(2))^{(6)/(3)}=5\text{ mg} \\ D(8)=20((1)/(2))^{(8)/(3)}=3.150\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lol4uqhrt8640jwtdl6s32u795r0cbuexz.png)
![\begin{gathered} D(10)=20((1)/(2))^{(10)/(3)}=1.984\text{ mg} \\ D(12)=20((1)/(2))^{(12)/(3)}=1.25\text{ mg} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6cn8kit3j1v5q4zyids90ix98t3v0hg37m.png)