131k views
3 votes
How do I do the last two?the actual mean is 0.995

How do I do the last two?the actual mean is 0.995-example-1
User Sshongru
by
4.7k points

1 Answer

3 votes

The standard deviation here uses the sample standard deviation formula:


s=\sqrt[]{\frac{\sum^{}_i(x_i-\bar{x})^2}{n-1}}

So, first we make the difference between the values and the mean:


\begin{gathered} 0.994-0.995=-0.001 \\ 0.992-0.995=-0.003 \\ 0.998-0.995=0.003 \end{gathered}

Now, we square them:


\begin{gathered} (0.994-0.995)^2=(-0.001)^2=0.000001=1*10^(-6) \\ (0.992-0.995)^2=(-0.003)^2=0.000009=9*10^(-6) \\ (0.998-0.995)^2=(0.003)^2=0.000009=9*10^(-6) \end{gathered}

And their sum goes into the equation:


\begin{gathered} \sum ^{}_i(x_i-\bar{x})^2=1*10^(-6)+9*10^(-6)+9*10^(-6)=1.9*10^(-5) \\ s=\sqrt[]{\frac{\sum^{}_i(x_i-\bar{x})^2}{n-1}}=\sqrt[]{(1.9*10^(-5))/(3-1)}=\sqrt[]{(1.9*10^(-5))/(2)}=\sqrt[]{9.5*10^(-6)}\approx0.003 \end{gathered}

Thus, the standard deviation is approximately 0.003 g/cm³.

User Phalanx
by
4.6k points