450,753 views
27 votes
27 votes
What is the arc length of an arc with radius 10 in and central angle 60 degrees ? Show your work.

User Erikbozic
by
2.4k points

2 Answers

18 votes
18 votes


\\ \sf\longmapsto \ell=(\Theta)/(180)\pi r


\\ \sf\longmapsto \ell=(60)/(180)* 3.14(10)


\\ \sf\longmapsto \ell=(1)/(3)(31.4)


\\ \sf\longmapsto \ell=10.4m

User Wfgeo
by
3.1k points
9 votes
9 votes

Answer:


\huge \boxed{ \boxed{ \red{{s \approx \: 10.47}}}}

Explanation:

to understand this

you need to know about:

  • geometry
  • PEMDAS

tips and formulas:


  • s = \frac{\pi {r} \theta}{180}

given:

  • r=10

  • \theta = 60

let's solve:


  1. \sf sustitute \: the \: value s \: of \: \theta \: and \: r : \\ =(\pi * 10 * 60)/(180)

  2. \sf rediuce \: 60 : \\ =\frac{\pi * 10 * \cancel{60} \: ^(1) }{ \cancel{180} \: \:^(3) } \\ =(\pi * 10)/(3)

  3. \sf use \: 3.14 \: for \: \pi : \\ = (3.14 * 10)/(3)

  4. \sf simplify \: multipication : \\ = (31.4)/(3) \\ \approx \: 10.47
User StevenWhite
by
2.7k points