The ordered list of the given plot is:
0, 0, 2, 2, 2, 3, 4, 4, 5, 5, 5, 7, 7
The first interquartile is given by:
IQ = Q3 - Q1
Where Q3 and Q1:
![\begin{gathered} Q_1=(1)/(4)(n+1) \\ Q_3=(3)/(4)(n+1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sugg7p6dwi6aqghprpn2rewbhoyh57rxil.png)
where n = 8 is the total number of data.
![\begin{gathered} Q_1=(1)/(4)(8+1)=(1)/(4)(9)=(9)/(4) \\ Q_3=(3)/(4)(8+1)=(3)/(4)(9)=(27)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m66zw2xfjllpv7g51480mn8idta15uekjv.png)
Then, the interquatile range:
IQ = 27/4 - 9/4 = 18/4
Hence, the interquartile range is 18/4