69.4k views
1 vote
a.) Convert the exponential function below to its corresponding logarithmic function. b.) Write the log form from Part A into the expanded log form.

a.) Convert the exponential function below to its corresponding logarithmic function-example-1
User Ashitosh
by
3.1k points

1 Answer

2 votes

INFORMATION:

We have the next expression:


12^3=x^4y^3z^6

And, we must:

a.) Convert the exponential function below to its corresponding logarithmic function

b.) Write the log form from Part A into the expanded log form

STEP BY STEP EXPLANATION:

a.) To convert it to its corresponding logarithmic function, we must use the next

In our case,


\begin{gathered} a=3 \\ b=12 \\ n=x^4y^3z^6 \end{gathered}

Now, replacing in the formula


log_(12)(x^4y^3z^6)=3

b.) To write the expanded log form of part A, we must use the properties of log

1. We can separate the multiplications using the first property


\begin{gathered} log_(12)(x^(4)y^(3)z^(6))=3 \\ log_(12)(x^4)+log_(12)(y^3)+log_(12)(z^6)=3 \end{gathered}

2. We can delete the exponent of the logarithms using the third property


4\cdot log_(12)x^{\text{ }}+3\cdot log_(12)y+6\cdot log_(12)z=3

ANSWER:

a.) The logarithmic function would be:


log_(12)(x^(4)y^(3)z^(6))=3

b.) The expanded log form would be:


4\cdot log_(12)x+3\cdot log_(12)y+6\cdot log_(12)z=3

a.) Convert the exponential function below to its corresponding logarithmic function-example-1
a.) Convert the exponential function below to its corresponding logarithmic function-example-2
User Christian Fredh
by
4.7k points