![\sqrt[]{x}\le4](https://img.qammunity.org/2023/formulas/mathematics/college/5m9f5ko9m3fwrt1xtyx3jcstgc2cror3ro.png)
we can replace the value of X for each option and check the inequality
A.20
![\begin{gathered} \sqrt[]{20}\le4 \\ 4.47\le4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cksxrkrs6dcnxozq4u0xv5owf4e0qszy8u.png)
the inequality is wrong because 4.47 is greater than 4
B.12
![\begin{gathered} \sqrt[]{12}\le4 \\ 3.46\le4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tvups985lnfylkm7dm2vuzp8y1n2jl5bit.png)
The inequality is right because 3.46 is less than 4
C.2
![\begin{gathered} \sqrt[]{2}\le4 \\ 1.41\le4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkab6fm1dba7pdcae45v3xlab9i0m33kgw.png)
The inequality is right because 1.41 is less than 4
D.5
![\begin{gathered} \sqrt[]{5}\le4 \\ 2.23\le4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i7a29u1k1uqrq71ni1d35f240eh9vap5py.png)
inequality is right because 2.23 is less than 4
E. -1
![\sqrt[]{-1}\le4](https://img.qammunity.org/2023/formulas/mathematics/college/lap46t6hap9xz5vv0wxjilkzmvelagt4sy.png)
we can calculate the root of a negative number then the option is wrong