134k views
5 votes
Hii can you help me out with this trigo qn !

Hii can you help me out with this trigo qn !-example-1

1 Answer

5 votes

The Solution:

Given:

Part(a)

(i) The value of the ratio of


(\sin\angle PRQ)/(\sin\angle RPQ)

Applying the Law of sine:


(\sin P)/(p)=(\sin(Q))/(q)=(\sin(R))/(r)

In this case,


\begin{gathered} \sin\angle PQR=\sin\angle Q \\ \sin\operatorname{\angle}PRQ=\sin\operatorname{\angle}R \\ \sin\operatorname{\angle}RPQ=\sin\operatorname{\angle}P \end{gathered}

So, the ratio


\frac{\sin\operatorname{\angle}PRQ}{\sin\operatorname{\angle}RPQ}=\frac{\sin\operatorname{\angle}R}{\sin\operatorname{\angle}P}

Applying the Law of sine to get the above ratio, we get


\begin{gathered} (\sin\angle R)/(r)=(\sin P)/(p) \\ \\ Where \\ r=2x \\ p=3x \end{gathered}

Substituting, we get


\frac{\sin\operatorname{\angle}R}{2x}=(\sin\angle P)/(3x)

Cross multiplying, we get


\begin{gathered} (\sin\angle R)/(\sin\angle P)=(2x)/(3x)=(2)/(3) \\ Thus, \\ \frac{\sin\operatorname{\angle}PRQ}{\sin\operatorname{\angle}RPQ}=\frac{\sin\operatorname{\angle}R}{\sin\operatorname{\angle}P}=(2)/(3) \end{gathered}

(ii) To find:


\cos\angle PQR=\cos\angle Q

Applying the Law of Cosine:


\cos\angle PQR=\cos\angle Q=(p^2+r^2-q^2)/(2pr)

Where,


p=3x,r=2x,q=4x

Substituting, we get


\begin{gathered} \cos\angle Q=((3x)^2+(2x)^2-(4x)^2)/(2(3x)(2x))=(9x^2+4x^2-16x^2)/(12x^2)=(13x^2-16x^2)/(12x^2) \\ \\ \cos\angle Q=(-3x^2)/(12x^2)=(-1)/(4)=-0.25 \\ \\ \angle Q=\cos^(-1)(-0.25)=104.4775\approx104.48^o \end{gathered}

Thus,


\cos\angle PQR=104.48^o

Part (b)

To find the value of x if the area of the triangle PQR is 12 square centimeters.

By area of triangle formula:


\begin{gathered} Area=(1)/(2)pr\sin Q \\ Where \\ Area=12cm^2 \\ p=3x \\ r=2x \\ \angle Q=104.48^o \end{gathered}

Substituting these values, we get


\begin{gathered} 12=(1)/(2)*3x*2x*\sin104.48 \\ cross\text{ multiplying, we get} \\ 24=6x^2(0.96823) \\ 24=5.8094x^2 \end{gathered}

Dividing both sides by 5.8094, we get


\begin{gathered} x^2=(24)/(5.8094)=4.131235 \\ \text{ Taking the square root of both sides, we get} \\ x=√(4.131235)=\pm2.0325 \\ x=2.0325\text{ \lparen since x cannot be negative\rparen} \end{gathered}

Thus, the value of x is 2.0325

Hii can you help me out with this trigo qn !-example-1
User Maxime Fabre
by
5.8k points