Given:
![f(x)=12x+2-11e^x](https://img.qammunity.org/2023/formulas/mathematics/college/4b03gssqikr87nh4k740eh32swl4btnllz.png)
We will find the equation of the line tangent to f(x) at the point (0, -9)
the slope of the tangent line = the first derivative f'(x)
the first derivative will be as follows:
![f^(\prime)(x)=12-11e^x](https://img.qammunity.org/2023/formulas/mathematics/college/tvvznj1z45yfjlukq150ie6zryocbfqceq.png)
substitute x = 0 to find the slope of the line tangent at (0,-9)
![m=f^(\prime)(0)=12-11e^0=12-11=1](https://img.qammunity.org/2023/formulas/mathematics/college/l96dwqtlwzkutbswfuiegtf3ghcq7d6qpd.png)
So, the equation of the line will be: y = x - 9
so, the answer will be:
m = 1
b = -9