Question 35.
Given:
![\begin{gathered} f(x)=x-5 \\ \\ g(x)=\sqrt[]{x+3} \\ \\ \text{Let's solve for }(f(x))/(g(x)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xqlnbhovtcdgaic5l5qh1obrywiz6klmqw.png)
To solve the function operation, let's divide both functions.
Hence, we have:
![(f(x))/(g(x))=\frac{x-5}{\sqrt[]{x+3}}](https://img.qammunity.org/2023/formulas/mathematics/college/rla6b23ku7712tbo7jvwh29ulybmsr2950.png)
Now, let's find the domain of the function f(x)/g(x).
Domain is the set of all possible x-values that makes the function true.
Hence, to find the domain, set the expression in the radicand equal to zero.
We have:
x + 3 = 0
Subtract 3 fromboth sides:
x + 3 - 3 = 0 - 3
x = - 3
Therefore, the domain in interval notation is:
(-3, ∞).
ANSWER:
![\begin{gathered} (h(x))/(g(x))=\frac{x-5}{\sqrt[]{x+3}} \\ \\ \text{Domain:}(-3,\infty) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m6hfpog6o8x254vzmyagn6uli97y0c6p1w.png)