The Solution.
First, we state the probability of developing cancer in a lifetime and that of not developing cancer in a lifetime.
![\begin{gathered} \text{Prob(Cancer) =}0.42 \\ \text{Prob(no cancer}=(1-0.42)=0.58 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/owzo2l1jq3z3fx8kwti5z7ieoxswlhgkki.png)
a. None of the 4 develop cancer:
Possible outcomes=[C'C'C'C']
![\begin{gathered} P(C^(\prime)C^(\prime)C^(\prime)C^(\prime))=pr(C^(\prime))* Pr(C^(\prime))* Pr(C\text{)}* Pr(C^(\prime))=Pr(C^(\prime))^4 \\ \text{Where Pr(C')=probability of not developing cancer.} \\ \text{ =0.58}^4=0.11316\approx0.113(11.3\text{ \%)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/25whcarnukzdnwkeptb0px63o8pw836p6d.png)
![\begin{gathered} Pr(C^{}\text{C}C^{}C^(\prime))=Pr(C)* Pr(C)* Pr(C)* Pr(C^(\prime))=Pr(C)^3* Pr(C^(\prime)) \\ =0.42^3*0.58=0.0741*0.58=0.04297\approx0.043\text{ ( 4.3\%)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8m4vn4amcm4ety79zlujxedgrqdaat3c9u.png)
Therefore, the correct answers are;
a. 0.113 (or 11.3%)
b. 0.043 (or 4.3%)