124k views
4 votes
Attached will be a my written picture of the problem, i understand it’s long.

Attached will be a my written picture of the problem, i understand it’s long.-example-1

1 Answer

5 votes

Use the definitions for the function operations to find the rules of correspondence of the given functions.


\begin{gathered} f(x)=4x^2+2x+7 \\ g(x)=2x-3 \end{gathered}

1)

Remember that:


(g-f)(x)=g(x)-f(x)

Replace the expressions for g(x) and f(x) and simplify:


\begin{gathered} (g-f)(x)=(2x-3)-(4x^2+2x+7) \\ =2x-3-4x^2-2x-7 \\ =-4x^2-10 \end{gathered}

2)

Remember that:


((f)/(g))(x)=(f(x))/(g(x)),g(x)\\e0

Replace the expressions for f(x)i and g(x):


((f)/(g))(x)=(4x^2+2x+7)/(2x-3)

The domain is the set of all real number such that g(x) is different form 0:


\begin{gathered} g(x)\\e0 \\ \Rightarrow2x-3\\e0 \\ \Rightarrow2x\\e3 \\ \therefore x\\e(3)/(2) \end{gathered}

Using interval notation, the domain is:


(-\infty,(3)/(2))\cup((3)/(2),\infty)

3)

Remember that:


(f\cdot g)(x)=f(x)\cdot g(x)

Then:


\begin{gathered} (f\cdot g)(x)=(4x^2+2x+7)(2x-3) \\ =(4x^2)(2x)+(2x)(2x)+(7)(2x)+(4x^2)(-3)+(2x)(-3)+(7)(-3) \\ =8x^3+4x^2+14x-12x^2-6x-21 \\ =8x^3-8x^2+8x-21 \end{gathered}

4)

To find f(x-3), replace (x-3) for x in the rule of correspondence of f:


\begin{gathered} f(x)=4x^2+2x+7 \\ \Rightarrow f(x-3)=4(x-3)^2+2(x-3)+7 \\ =4(x^2-6x+9)+2x-6+7 \\ =4x^2-24x+36+2x+1 \\ =4x^2-22x+37 \end{gathered}

5)

Remember that:


(f\circ g)=f(g(x))

To find f(g(x)), replace g(x) for x into the rule of correspondence of f:


\begin{gathered} (f\circ g)(x)=f(g(x)) \\ =4(g(x))^2+2(g(x))+7 \end{gathered}

Replace the expression for g(x):


\begin{gathered} \Rightarrow(f\circ g)(x)=4(2x-3)^2+2(2x-3)+7 \\ =4(4x^2+-12x+9)+4x-6+7 \\ =16x^2-48x+36+4x+1 \\ =16x^2-44x+37 \end{gathered}

6)

To find g(f(x)), replace f(x) for x into the rule of correspondence of g(x):


\begin{gathered} (g\circ f)(x)=g(f(x)) \\ =2\cdot f(x)-3 \\ =2(4x^2+2x+7)-3 \\ =8x^2+4x+14-3 \\ =8x^2+4x+11 \end{gathered}

7)

Notice that we already have a rule of correspondence for g(f(x)). Substitute x=-1 to find g(f(-1)):


\begin{gathered} g(f(x))=8x^2+4x+11 \\ \Rightarrow g(f(-1))=8(-1)^2+4(-1)+11 \\ =8-4+11 \\ =15 \end{gathered}

8)

To find the inverse of f(x), repace y=f(x) and isolate x:


\begin{gathered} y=4x^2+2x+7 \\ \Rightarrow4x^2+2x+7-y=0 \\ \Rightarrow x=\frac{-2+\sqrt[]{2^2-4(4)(7-y)}}{2(4)} \\ =\frac{-2+\sqrt[]{4-112+16y}}{8} \\ =\frac{-2+\sqrt[]{16y-108}}{8} \\ =\frac{-1+\sqrt[]{4y-27}}{4} \end{gathered}

Next, switch x and y in the equation:


y=\frac{-1+\sqrt[]{4x-27}}{4}

Finally, substitute y=f^-1(x):


\therefore f^(-1)(x)=\frac{-1+\sqrt[]{4x-27}}{4}

9)

To find f(-x), replace x for -x in the rule of correspondence of f:


\begin{gathered} f(-x)=4(-x)^2+2(-x)+7 \\ =4x^2-2x+7 \end{gathered}

User Jon Winstanley
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories