Use the definitions for the function operations to find the rules of correspondence of the given functions.

1)
Remember that:

Replace the expressions for g(x) and f(x) and simplify:

2)
Remember that:

Replace the expressions for f(x)i and g(x):

The domain is the set of all real number such that g(x) is different form 0:

Using interval notation, the domain is:

3)
Remember that:

Then:

4)
To find f(x-3), replace (x-3) for x in the rule of correspondence of f:

5)
Remember that:

To find f(g(x)), replace g(x) for x into the rule of correspondence of f:

Replace the expression for g(x):

6)
To find g(f(x)), replace f(x) for x into the rule of correspondence of g(x):

7)
Notice that we already have a rule of correspondence for g(f(x)). Substitute x=-1 to find g(f(-1)):

8)
To find the inverse of f(x), repace y=f(x) and isolate x:
![\begin{gathered} y=4x^2+2x+7 \\ \Rightarrow4x^2+2x+7-y=0 \\ \Rightarrow x=\frac{-2+\sqrt[]{2^2-4(4)(7-y)}}{2(4)} \\ =\frac{-2+\sqrt[]{4-112+16y}}{8} \\ =\frac{-2+\sqrt[]{16y-108}}{8} \\ =\frac{-1+\sqrt[]{4y-27}}{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bbm7v3kv7h3elvn1rcg3473kcnm8uutknq.png)
Next, switch x and y in the equation:
![y=\frac{-1+\sqrt[]{4x-27}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/y2lb97jw9r1jutxddbcen8at59wwbf1ech.png)
Finally, substitute y=f^-1(x):
![\therefore f^(-1)(x)=\frac{-1+\sqrt[]{4x-27}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/fla6ig7izwmuep59zro83wv5wyhbibufqy.png)
9)
To find f(-x), replace x for -x in the rule of correspondence of f:
