149k views
3 votes
I just want to make sure I solved it correctly this is how the formula looks and 39200[(1+0.082/1)^1(5) / 0.082/1

I just want to make sure I solved it correctly this is how the formula looks and 39200[(1+0.082/1)^1(5) / 0.082/1-example-1
User Ono
by
7.3k points

1 Answer

4 votes

Hello! Let's rewrite the formula below:


A\text{ = }\frac{39200\lbrack(1+(0.082)/(1))^(1(5))-1\text{\rbrack}}{(0.082)/(1)}

First, we can simplify the fractions with 1 in the denominator:


\begin{gathered} A\text{ = }\frac{39200\lbrack(1+0.082)^(1.(5))-1\text{\rbrack}}{0.082} \\ \\ A\text{ = }\frac{39200[(1.082)^5-1\text{\rbrack}}{0.082} \\ \\ A\text{ = }\frac{39200\lbrack((541)/(500))^5-1\text{\rbrack}}{(41)/(500)} \\ \\ A\text{ = }\frac{39200\lbrack(541^5)/(500^5)^{}-1\text{\rbrack}}{(41)/(500)} \\ \\ A\text{ = }\frac{39200.(541^5)/(500^5)^{}-39200\text{\rbrack}}{(41)/(500)} \\ \\ A\text{ = }\frac{39200.(541^5)/(500^4.500)^{}-39200\text{\rbrack}}{(41)/(500)} \\ \\ A\text{ = }\frac{392.(541^5)/(500^3.500.5)^{}-39200\text{\rbrack}}{(41)/(500)} \\ \\ A\text{ = (}98.(541^5)/(500^3.125.5)^{}-39200)divided(41)/(500) \\ \\ A\text{ = }\frac{98.(541^5)/(500^2.500.125.5)^{}-39200}{(41)/(500)} \\ \\ A\text{ = }\frac{49(541^5)/(500^2.(250.125.5))^{}-39200}{(41)/(500)} \\ \\ A\text{ = }\frac{49(541^5)/(500.500.(156250))^{}-39200}{(41)/(500)} \\ \\ A\text{ = }\frac{(49.541^5)/(250000.156250)^{}-39200}{(41)/(500)} \\ \\ A\cong230889.65 \\ \end{gathered}

User Vedavis
by
7.3k points