194,889 views
8 votes
8 votes
Given cos theta = - 2/5 and sin theta < 0, find the six trigonometric values. I need help with this

User Burak
by
2.7k points

1 Answer

17 votes
17 votes

Answer:


\sin\,\theta =-(√(21) )/(5)


\tan\,\theta =(√(21) )/(2)


\sec\,\theta = (-5)/(2)


cosec\,\theta =(-5)/(√(21) )


\cot\,\theta =(2)/(√(21) )

Explanation:


\cos\theta =(-2)/(5)<0\\sin\theta <0

As both
sin\,\theta<0,\,\cos\,\theta <0,


\theta lies in the third quadrant.

In the third quadrant,


\sin\theta<0,\,\cos\,\theta <0\,,\,\sec\,\theta<0,\,cosec\theta<0,\,tan\,\theta>0,\,cot\,\theta>0


\sin\,\theta =-√(1-\cos^2\,\theta) \\=-\sqrt{1-((-2)/(5))^2 } \\\\=-\sqrt{1-(4)/(25) }\\\\=-\sqrt{(25-4)/(25) }\\\\=-(√(21) )/(5)


\tan\,\theta = (\sin\,\theta)/(\cos\,\theta )\\\\=((-√(21) )/(5) )/((-2)/(5) )\\\\=(√(21) )/(2)


\sec\,\theta =(1)/(\cos\,\theta )\\\\=(1)/((-2)/(5) )\\\\=(-5)/(2)


\ cosec \,\theta = (1)/(sin\,\theta )\\\\=(1)/((-√(21) )/(5) )\\\\=(-5)/(√(21) )


\cot\,\theta =(1)/(\tan\,\theta)\\\\=(1)/((√(21) )/(2) )\\\\=(2)/(√(21) )

User Maxim Palenov
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.