45.4k views
0 votes
Solve -4 < 3x+ 2 < =5.

User SKL
by
4.1k points

1 Answer

3 votes

Given:

There are given that the inequality:


-4<3x+2\leq5

Step-by-step explanation:

To solve the above inequality, we need to use the inequality rule:

Then,

From the inequality rule:


\begin{gathered} ifa<u>So,</u><p>Apply the above rule to the given inequality:</p><p>So,</p><p>From the inequality:</p>[tex]\begin{gathered} -4\lt3x+2\leqslant5 \\ -4<3x+2,and,3x+2\leq5 \end{gathered}

Then,


\begin{gathered} -4\lt3x+2, and, 3x+2\leqslant5 \\ -4-2<3x+2-2,and,3x+2-2\leq5-2 \\ -6<3x,and,3x\leq3 \end{gathered}

Then,


\begin{gathered} -6\lt3x, and, 3x\leqslant3 \\ -(6)/(3)\lt(3x)/(3),and,(3x)/(3)\leqslant(3)/(3) \\ -2<strong>Final answer:</strong><p>Hence, <strong>the solution to the given inequality is shown below:</strong></p>[tex]-2\lt x\leqslant1

User Joelty
by
3.6k points