The equation of a circle with center (a, b) and radius r is

We are given the center as

To find the radius, we can use the formula to find the distance between two points, that is, the point on the circle and the center.
![r=\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2_{}_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/zutrua7xun2fbpal7m1c2325m491hwaxa6.png)
where (x₁, y₁) = (-14, 9)
(x₂, y₂) = (-11, 12)
Thus, we have
![\begin{gathered} r=\sqrt[]{(12-9)^2+(-11-\lbrack-14\rbrack)^2} \\ r=\sqrt[]{3^2+3^2} \\ r=\sqrt[]{9+9} \\ r=\sqrt[]{18} \\ r=3\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rd9slw4r2ibiiutp4bf6u6m9emby7x8oip.png)
Therefore, inputting all the values into the equation for a circle, we have
![\begin{gathered} (x-\lbrack-14\rbrack)^2+(y-9)^2=3\sqrt[]{2} \\ \therefore \\ (x+14)^2+(y-9)^2_{^{}}=3\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z396drrwgzghds5twyl5mk3imzd750ibcv.png)