Since y varies directly with x, we will be using this formula:
![\text{ y = kx}](https://img.qammunity.org/2023/formulas/mathematics/college/d8b3e4rc4m7tr3hk1rcak0ydtwszox3jvl.png)
Given:
Constant rate of change = k = 7
Let's substitute k to generate the equation. We get,
![\text{ y = 7x}](https://img.qammunity.org/2023/formulas/mathematics/college/46kfgzqqn5v96ljexsca34obuons7rfo9q.png)
Let's now determine the value of x when y = 12.
![\text{ y = 7x }\rightarrow\text{ x = }(y)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/2cxzabxrcsmu2ug5et6d8i3q0rovasigun.png)
![\text{ x = }(12)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/dsg2co6k8nsrpa2mtf2or1nlic8row9o5q.png)
Therefore, at a constant rate of change of 7 and y varies directly with x, a value of y = 12 will have an x value of 12/7.