397,124 views
29 votes
29 votes
Multiplying and dividing radical expressions and leaving them in factored form. I am trying to find the best and easy way to get the factored form correctly. This is my problem: 3x+8 over 36-2x / 27x^2+72x over 3x^2-27.

User Wayne Kao
by
2.8k points

1 Answer

10 votes
10 votes

Answer:


(3x + 8)/(36 - 2x) / (27x^2 + 72x)/(3x^2 - 27) = ((x - 3)(x+3))/(6x(18 - x))

Explanation:

Given


(3x + 8)/(36 - 2x) / (27x^2 + 72x)/(3x^2 - 27)

Required

Solve

Change / to *


(3x + 8)/(36 - 2x) * (3x^2 - 27)/(27x^2 + 72x)

Factor out 3


(3x + 8)/(36 - 2x) * (3(x^2 - 9))/(3(9x^2 + 24x))


(3x + 8)/(36 - 2x) * ((x^2 - 9))/((9x^2 + 24x))

Factorize:


(3x + 8)/(36 - 2x) * ((x^2 - 9))/(3x(3x + 8))

Cancel out 3x + 8


(1)/(36 - 2x) * ((x^2 - 9))/(3x)

Factorize:


(1)/(2(18 - x)) * ((x^2 - 9))/(3x)

Combine


(x^2 - 9)/(2*3x(18 - x))


(x^2 - 9)/(6x(18 - x))

Express the numerator as a difference of two squares


((x - 3)(x+3))/(6x(18 - x))

Hence:


(3x + 8)/(36 - 2x) / (27x^2 + 72x)/(3x^2 - 27) = ((x - 3)(x+3))/(6x(18 - x))

User Foxfire
by
2.8k points