The problem is given to be:
![\csc (\tan ^(-1)(w))](https://img.qammunity.org/2023/formulas/mathematics/college/ooq8avr55mvcutuj4hjzof5fbq2uopc5i6.png)
Let
![\begin{gathered} \theta=\tan ^(-1)w \\ \therefore \\ \tan \theta=w \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tbk5s6att6c2n9u3tlfhxsz3wlaf2myh4h.png)
We can write the above to be:
![\tan \theta=(w)/(1)](https://img.qammunity.org/2023/formulas/mathematics/college/pvp1lntzmyt48rofalchwu1ei0a0ohvit7.png)
Using the above, we can draw a right-angled triangle as shown below:
To find the value of x, we can use the Pythagorean Theorem:
![\begin{gathered} x^2=w^2+1^2 \\ x=\sqrt[]{w^2+1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/verdorqql7uq0z9gcbkgqo2tq2u6l69xfr.png)
Recall:
![\csc (\tan ^(-1)(w))=\csc \theta](https://img.qammunity.org/2023/formulas/mathematics/college/l1qzn1hv2aqvmqoxlyvjk909combs29f39.png)
The identity of cosec is given to be:
![\csc \theta=(1)/(\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/ubeff19zbv298o2h5akm0eeqytyryw3k49.png)
From the triangle,
![\sin \theta=(w)/(x)=\frac{w}{\sqrt[]{w^2+1}}](https://img.qammunity.org/2023/formulas/mathematics/college/3uu9kqxc430c5jc1kbdo28c6is15hq30zw.png)
Therefore,
![\csc \theta=\frac{\sqrt[]{w^2+1}}{w}](https://img.qammunity.org/2023/formulas/mathematics/college/obob1iu8tkkcxmtf486lxz9zlw2xh2eg0t.png)
Therefore, the answer is given to be:
![\csc (\tan ^(-1)(w))=\frac{\sqrt[]{w^2+1}}{w}](https://img.qammunity.org/2023/formulas/mathematics/college/wyp7e1fiegftic3lhqkn8omkiigipggru1.png)