Answer:
Volume = 655.73
Step-by-step explanation:
The sno-cone is composed of a hemisphere and a cone; therefore, its volume is
![V=V_(cone)+V_(hemisphere)](https://img.qammunity.org/2023/formulas/mathematics/college/nw3d9vnk4ekozf3ehgen8655o7ocw65tmw.png)
Now
![V_{\text{cone}}=(\pi r^2h)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/en25tmoyitz53dpapihijagxp41dqgj200.png)
and the volume of the hemisphere is
![V_{\text{hemisphere}}=(2)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/college/2dpaq16eskkxtnyd8sl1cmh808zo7ajccj.png)
Therefore,
![V=V_(cone)+V_(hemisphere)](https://img.qammunity.org/2023/formulas/mathematics/college/nw3d9vnk4ekozf3ehgen8655o7ocw65tmw.png)
![\rightarrow V=(\pi r^2h)/(3)+(2)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/college/s83lmd25bo77ja0n9351n1krptmb7914lk.png)
putting in h = 9.7 mm and r = 5.5 mm gives
![\begin{gathered} V=(\pi(5.5)^2(9.7))/(3)+(2)/(3)\pi(5.5)^3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p9gqnrfksir4h8s8nz487if0k7xsyrwtk9.png)
which simplifies to give (rounded to the nearest hundreth)
![V=655.73\operatorname{mm}^3]()
which is our answer!