63,789 views
34 votes
34 votes
Solve 2x^2 - 3x + 6 = 0.

User Sigvardsen
by
3.0k points

1 Answer

14 votes
14 votes

Answer:


\displaystyle x=(3 \pm i√(39))/(4)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Factoring
  • Quadratic Formula:
    \displaystyle x=(-b \pm √(b^2-4ac))/(2a)

Algebra II

  • Imaginary Numbers: i = √-1

Explanation:

Step 1: Define

2x² - 3x + 6 = 0

Step 2: Solve for x

  1. [Quadratic] Identify Variables [Standard Form]: a = 2, b = -3, c = 6
  2. Substitute in variables [Quadratic Formula]:
    \displaystyle x=(3 \pm √((-3)^2-4(2)(6)))/(2(2))
  3. [√Radical] Evaluate exponents:
    \displaystyle x=(3 \pm √(9-4(2)(6)))/(2(2))
  4. [√Radical] Multiply:
    \displaystyle x=(3 \pm √(9-48))/(2(2))
  5. [√Radical] Subtract:
    \displaystyle x=(3 \pm √(-39))/(2(2))
  6. Multiply:
    \displaystyle x=(3 \pm √(-39))/(4)
  7. Factor:
    \displaystyle x=(3 \pm √(-1)√(39))/(4)
  8. Simplify:
    \displaystyle x=(3 \pm i√(39))/(4)
User Adam Harte
by
3.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.