Given:
Principal, P = $2,240
Interest rate, r = 3½% = 3.5% = 0.035
Time, t = 6 months = 6/12 months a year = 0.5 years
Yearly deposits, n = 4 (quaterly)
Use the compound interest formula below:
![A\text{ = P(}1\text{ + }(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/college/gligckgc04thhku812ukqeeerojlhx0503.png)
Therefore, we have:
![A\text{ = 2240(1 + }(0.035)/(4))^(4\cdot0.5)](https://img.qammunity.org/2023/formulas/mathematics/college/ippsdqln507e2snh1hibxr7w1mzb76vr7q.png)
Solving further,
![A\text{ = 2240 (1 + }0.1757)](https://img.qammunity.org/2023/formulas/mathematics/college/cu4c6feu3axuuz2xrg49lf3cb5mk3vfopf.png)
![\begin{gathered} A\text{ = 2240( 1.01757)} \\ \text{ = }2279.3715 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zh62terr0lpkn1p6fwcgekk007un9172ai.png)
Therefore his new balance after 6 months is $2279.37
ANSWER:
$2,279.37