The Solution:
Given that a bank loaned out $18000.
Let the amount loaned out at 8% per year be represented with x.
So that the amount loaned out at 16% per year will be $(18000-x)
Recall: By formula for simple interest ( since the simple interest is the same as compound interest if the period under consideration is 1 year), we have:
![I=\frac{\text{PRT}}{100}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b5ssdme3vvrjvv0gy4uokzw1mj3t61zdkp.png)
So, for the loan at 8% per year:
![\begin{gathered} I_{1_{}}=\text{ interest=?} \\ P\text{ =principal=\$x} \\ T=\text{ time =1year} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/suwx29riw36p7k4fvim2ju0evgzhztt71b.png)
So, for the loan at 16% per year:
![\begin{gathered} I_{2_{}}=\text{ interest=?} \\ P\text{ =principal=\$(18000-x)} \\ T=\text{ time =1year} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ong3ri6tpaqrqh81wkn6b5kkb89jnvu273.png)
![(I_1+I_2)=(8* x*1)/(100)+((18000-x)*16*1)/(100)](https://img.qammunity.org/2023/formulas/mathematics/college/nrh067wa6chic9pyd7mewk3izrf2u17epx.png)
![(I_1+I_2)=\text{ \$2500}](https://img.qammunity.org/2023/formulas/mathematics/college/vnblwqib9nyzwyb7li8g0nowbxdc5e93bw.png)
![2500=(8x)/(100)+(16(18000-x))/(100)](https://img.qammunity.org/2023/formulas/mathematics/college/c61o35yuk93smc316w3ysthnja9cflkecl.png)
![2500=(8x+288000-16x)/(100)](https://img.qammunity.org/2023/formulas/mathematics/college/r93ihti2ha2sbqq9wswsy1f0cz3qwwqayh.png)
Cross multiplying, we get
![250000=288000-8x](https://img.qammunity.org/2023/formulas/mathematics/college/uqmzxl5pwg4r9cbiofuktt4nip2b80gjxb.png)
![\begin{gathered} 8x=288000-250000 \\ 8x=38000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5kvbpu40kgcu5gtr5qelq6pi8yt6hir0sl.png)
Dividing both sides by 8, we get
![x=(38000)/(8)=\text{ \$4750}](https://img.qammunity.org/2023/formulas/mathematics/college/4nk24vfezzd367qlogas76y9z0dlzx9tda.png)
Thus, the amount loaned at 8% is $4750.
Therefore, the correct answer is $4750.