Before working on the answer, let us define some things:
![\begin{gathered} \sigma=1.3 \\ n=4000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b1e6kcphcm85ecqmj49wvu0v7s09963ymn.png)
Besides, we need to calculate the average (x bar) of roaches produced by a single roach in the week:
![\bar{x}=(15400)/(4000)=3.85](https://img.qammunity.org/2023/formulas/mathematics/college/tuek1gelmxpctlibnrby2a2k3ktylyc917.png)
Let's look at our z-score table. the value associated with a confidence level of 90% is
![z^{}=1.645](https://img.qammunity.org/2023/formulas/mathematics/college/xo6t6r6wz2dta03e9bzwl7hss6k95g7fpj.png)
Having calculated these things, we're done; for the desired confidence interval is given by
![CI=(\bar{x}-z\cdot\frac{\sigma}{\sqrt[]{n}},\bar{x}+z\cdot\frac{\sigma}{\sqrt[]{n}})](https://img.qammunity.org/2023/formulas/mathematics/college/9mqcwahs0nynzwwqzd5nqmwtbmxmoz9cho.png)
Replacing the values we just got:
![CI=(3.85-(1.645)\cdot\frac{1.3}{\sqrt[]{4000}},3.85+(1.645)\cdot\frac{1.3}{\sqrt[]{4000}})\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/5ssxzvpvvu6cndt8t9teiwk84o669ssmam.png)
![\ldots\approx(3.85-0.0338,3.85+0.0338)=(3.816,3.884)](https://img.qammunity.org/2023/formulas/mathematics/college/e4tgfeuwjvyv0lo0ewhaha97ebeu9rqi1k.png)
The answer is
![(3.816,3.884)](https://img.qammunity.org/2023/formulas/mathematics/college/xmniuf0kb63ki9xhbpskcddvjyp02alpwa.png)