![\begin{gathered} 16x+3y=138 \\ 8x+3y=90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jjwlwakf85va08ssr8fcs2jeou9s2dpw5j.png)
To solve a system of equations you:
1. Solve one of the equations for one of the variables:
Solve x in first variable:
![\begin{gathered} 16x=138-3y \\ \\ x=(138)/(16)-(3)/(16)y \\ \\ x=(69)/(8)-(3)/(16)y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yotee7wbo3h210jmal0l16dy7xnm0ilmt9.png)
2. Use the value of x you find in part 1 in the second equation:
![8((69)/(8)-(3)/(16)y)+3y=90](https://img.qammunity.org/2023/formulas/mathematics/college/p3z3np81ro5udk10t2c0dkxz0er4h1xxfc.png)
3. Solve for y:
![\begin{gathered} 69-(24)/(16)y+3y=90 \\ \\ -(3)/(2)y+3y=90-69 \\ \\ (-3y+6y)/(2)=21 \\ \\ (3)/(2)y=21 \\ \\ y=21((2)/(3))=(42)/(3)=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vx5iuqkde1ymkaf2i8ew2j80me92bel4ud.png)
4. Use the value of y to find the value of x:
![\begin{gathered} x=(69)/(8)-(3)/(16)y \\ \\ x=(69)/(8)-(3)/(16)(14) \\ x=(69)/(8)-(42)/(16) \\ \\ x=(69)/(8)-(21)/(8)=(48)/(8)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhsamkve3dejr5j4lswn57vje4bak2qlgz.png)
Then, the solution of the system is ( 6, 14)