Given the function f(x) = x3 + 5x2 – X – 4, find...
a) f'(-2).
b) the values of a such that f'(a) = 56.
step 1
Find f'(x)
first derivative
![f^(\prime)(x)=3x^2+10x-1](https://img.qammunity.org/2023/formulas/mathematics/college/ks6t2mjn3x3h20ko2ax91lbabqfq7vpu0m.png)
f'(-2)
For x=-2
substitute
![\begin{gathered} f^(\prime)(-2)=3(-2)^2+10(-2)-1 \\ f^(\prime)(-2)=12-20-1 \\ f^(\prime)(-2)=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/259ucesnqt3siw1hlz4midtqcqhv9actqj.png)
step 2
the values of a such that f'(a) = 56.
![\begin{gathered} f^(\prime)(x)=3x^2+10x-1 \\ 56=3x^2+10x-1 \\ 3x^2+10x-57=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/91435tbi4oa93qo71xbbadxmtnw3rkbid1.png)
Solve the quadratic equation
solve by using the formula
a=3
b=10
c=-57
substitute
![x=\frac{-10\pm\sqrt[\square]{10^2-4(3)(-57)}}{2(3)}](https://img.qammunity.org/2023/formulas/mathematics/college/4drfhdtwuq3mrpbkp04mwev739q96xwih0.png)
![x=\frac{-10\pm\sqrt[\square]{784}}{6}](https://img.qammunity.org/2023/formulas/mathematics/college/4yh2frg11ndvhage8ykvujehn2m3zw6scd.png)
![x=(-10\pm28)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/73ksnc6e8fyn65ddtuc7v63d6lucv5981w.png)
the values of x are
x=3 and x=-19/3