12.4k views
2 votes
Please help me figure out how to solve the problem X squared to the Y square root 18 X to the fifth Y to the second

Please help me figure out how to solve the problem X squared to the Y square root-example-1

1 Answer

6 votes

To solve this problem, we will use the following property of exponents:


x^nx^m=x^(n+m).

Now, notice that:


x^5=x^(2+3)=x^2x^3\text{.}

Therefore, we can rewrite the given expression as follows:


x^2y\sqrt[]{18x^2y^2x^3}.

Recall that:


\sqrt[]{ab}=\sqrt[]{a}\sqrt[]{b}.

Therefore, we can split the root as follows:


x^2y\sqrt[]{18x^2y^2x^3}=x^2y\sqrt[]{18}\sqrt[]{x^2y^2}\sqrt[]{x^3}\text{.}

Simplifying we get:


x^2y\sqrt[]{18}\sqrt[]{x^2y^2}\sqrt[]{x^3}=x^2y\sqrt[]{9\cdot2}\sqrt[]{x^2}\sqrt[]{y^2}\sqrt[]{x^3}=x^2y3\sqrt[]{2}xy\sqrt[]{x^2x}.

Multiplying like terms, we get:


x^2yxy\sqrt[]{18x^3}=x^4y^2\sqrt[]{18x}=x^4y^2\sqrt[]{(9\cdot2)x^2}=3x^4y^2\sqrt[]{2x}.

Answer:


3x^4y^2\sqrt[]{2x^3}\text{.}

Example:

Simplify


2x^2y^3\sqrt[]{9x^3y^2}.

First, we notice that:


\begin{gathered} x^3=x^2x, \\ 9=3^2. \end{gathered}

Therefore, we can rewrite the expression as:


2x^2y^3\sqrt[]{3^2x^2xy^2}=2x^2y^3\sqrt[]{3^2x^2y^2}\sqrt[]{x}=2x^2y^3(3xy)\sqrt[]{x}.

Simplifying we get:


6x^3y^4\sqrt[]{x}.

User Pablobu
by
5.0k points