Useful Formulas:
![\begin{gathered} Area\text{ }of\text{ }triangle=(1)/(2)bh \\ Area\text{ }of\text{ }square=l^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4bqimaztlgaipq4kzzof39qfzlnfolznfm.png)
SOLUTION
All four triangles are identical. They all have the following parameters:
![\begin{gathered} b=16\text{ yd} \\ h=15\text{ yd} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ag3mgkndaiombp064l5yp0l8epo0xth6di.png)
Therefore, the areas are equal:
![A_U=A_V=A_X=A_Y](https://img.qammunity.org/2023/formulas/mathematics/college/ol6nyv8t58jv3cky7f8fu0bsuzcs2gutsl.png)
Hence, we can calculate the area to be:
![A_U=(1)/(2)*16*15=120\text{ yd}^2](https://img.qammunity.org/2023/formulas/mathematics/college/dqc27syqamaqccj4rmfcjdttotktqa6kfz.png)
The area of the base, W, is calculated to be:
![\begin{gathered} l=16\text{ yd} \\ \therefore \\ A_W=16^2=256\text{ yd}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wfwu1jhchap82yuydcwa9ut1bf8h65fz4r.png)
The total surface area is calculated as:
![A=A_U+A_V+A_W+A_X+A_Y](https://img.qammunity.org/2023/formulas/mathematics/college/qr8zeh4u4q1lt2yhslq8zkc0hrmcfsh9qf.png)
Therefore, the total surface area will be:
![\begin{gathered} A=120+120+256+120+120 \\ A=736\text{ yd}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hisd926vc9uupabj28vie422xycw39ixrp.png)
The total surface area is 736 square yards.