Answer:
y=12.93
Explanation:
If y varies inversely as the fourth root of x, then we have:
![y\propto\frac{1}{\sqrt[4]{x}}](https://img.qammunity.org/2023/formulas/mathematics/college/etsaodcxx845mmjb1gjfeed314xz7j6xpd.png)
Introducing the constant of variation, k, we have the equation:
![y=\frac{k}{\sqrt[4]{x}}](https://img.qammunity.org/2023/formulas/mathematics/college/axh6z2z0v98acnxzpikduty66suu07r0ze.png)
When x = 81, y = 10
![\begin{gathered} 10=\frac{k}{\sqrt[4]{81}} \\ \implies10=(k)/(3) \\ \text{Cross multipl}y \\ k=10*3 \\ k=30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vy63v7rsiad50lfrkucplnb51o0khob8nz.png)
Substitute k=30 into the equation of variation.
![y=\frac{30}{\sqrt[4]{x}}](https://img.qammunity.org/2023/formulas/mathematics/college/tb0qmpq10dtlf7e8kh9ed4v97r3oudh0uc.png)
When x=29.
![\begin{gathered} y=\frac{30}{\sqrt[4]{29}}=(30)/(2.3206)=12.926 \\ y\approx12.93 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jaxqk3ylmfj83lzxuqul32e1tg593iwrsn.png)
The value of y when x=29 is 12.93 (correct to 2 decimal places).