SOLUTION:
From the question, we have that y varies jointly as z and of the square of x and inversely as t and of the square root of w.
This is mathematically written as
![\begin{gathered} y\propto zx^2\text{ and } \\ y\propto\frac{1}{t\sqrt[]{w}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/koaccbnrwngolpog64ug85iqowl8x4u2ir.png)
Combining we have
![\begin{gathered} y\propto\frac{zx^2}{t\sqrt[]{w}} \\ \propto\text{ is the proportionality sign } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f2uqb5s7la2kjkgwh4p713a895nerx9d30.png)
Removing the proportionality sign and introducing a constant k, we have
![\begin{gathered} y=\frac{kzx^2}{t\sqrt[]{w}} \\ \text{cross multiplying we have } \\ kzx^2=yt\sqrt[]{w} \\ k=\frac{yt\sqrt[]{w}}{zx^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zyxly6ih9o2b2a9nlg2nx5ykpigctb3tlg.png)
Now, plugging in the initial values of y, t, w, z and x, we have k as
![\begin{gathered} k=\frac{yt\sqrt[]{w}}{zx^2} \\ k=\frac{1*3\sqrt[]{16}}{3*2^2} \\ k=(3*4)/(3*4) \\ k=(12)/(12) \\ k=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zzdju22o5vz9xr4ig30k9w4v22yaqstf74.png)
So, the relationship is
![\begin{gathered} y=\frac{kzx^2}{t\sqrt[]{w}} \\ y=\frac{1zx^2}{t\sqrt[]{w}} \\ y=\frac{zx^2}{t\sqrt[]{w}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zn0i6bh41nxftmav4udeo38cvvvg6nerxa.png)
Using the relationship
![y=\frac{zx^2}{t\sqrt[]{w}}](https://img.qammunity.org/2023/formulas/mathematics/college/c02ij7faysmmsoanpy5tjzeirfelpwajoc.png)
to find y, we plug in the second values of x, z, t and w, we have
![\begin{gathered} y=\frac{zx^2}{t\sqrt[]{w}} \\ y=\frac{2*3^2}{1\sqrt[]{36}} \\ y=(2*9)/(1*6) \\ y=(18)/(6) \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2bbz3t0cr2f5s2ibwz6axl3jpbgbbyondv.png)
Hence the answer is y = 3