Use each measure to match each angle with it's measure
_________________________________
The sum of internal angles in a triangle is 180º
Δ NLK
∠ LNK + ∠ LKN + ∠ NLK = 180º
In an equilateral triangle, two of its sides are equal therefore the angles measure the same, ∠ LKN = ∠ NLK
1) Δ NLK
∠ LKN = ?
∠ LNK = 50º
Replacing
50º + 2*∠ LKN = 180º
∠ LKN = (180- 50)/ 2
∠ LKN = 65º
____________________________________
Can you see the updates?
________________________________
The sum of supplementary angles is180º
So then
3) ∠ LNM = 130º
______________________________
2) Δ MNL
∠ LMN = ?
Since the sum of internal angles in a triangle is 180º
∠ LNM + ∠ LMN + ∠ NLM= 180º
In an equilateral triangle, two of its sides are equal therefore the angles measure the same, ∠ LMN = ∠ NLM
Replacing
130º + 2 * ∠ LMN = 180º
∠ LMN = (180- 130)/ 2
∠ LMN = 25º
____________________________
Answers
1) ∠ LKN = 65º
2 ∠ LMN = 25º
3) ∠ LNM = 130º