Solution:
In your own words, describe two binomials that, when multiplied, results in the difference of two squares.
Let the binomials be
![(x+a)\text{ and }(x-a)](https://img.qammunity.org/2023/formulas/mathematics/college/x8hghy55hp7plfuqm4tblxyddznkeguqg8.png)
Where the first term is x and the second term is a
Multiplying the binomials
![\begin{gathered} (x+a)(x-a)=(x)^2-(a)^2=x^2-a^2 \\ (x+a)(x-a)=x^2-a^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3rmju9z9xvm3ypvs7sxzrscdw42cymu1fe.png)
Hence, when multiplied, the result is the difference of two squares.
Assuming the binomials, for example are
![(2x+2)\text{ and }(2x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/c2yb6s6alwwv3u8tdrwoz3rjenrma3m5fq.png)
Their product will give
![\begin{gathered} (2x+2)(2x-2)=(2x)^2-(2)^2=4x^2-4 \\ (2x+2)(2x-2)=4x^2-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tpg2vh7v8a019lypfqepdo758v8tr5npnv.png)
Hence, the product is
![4x^2-4](https://img.qammunity.org/2023/formulas/mathematics/college/26pzl7rlq1qrmz9obge5jwk58q6zntietq.png)